Tweak display options in pandas
27_change_display_options

This introduction to pandas is derived from Data School's pandas Q&A with my own notes and code.

Changing display options in pandas

In [1]:
import pandas as pd
In [2]:
url = 'http://bit.ly/drinksbycountry'
drinks = pd.read_csv(url)
In [3]:
# this shows only the first and last 30 rows
drinks
Out[3]:
country beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol continent
0 Afghanistan 0 0 0 0.0 Asia
1 Albania 89 132 54 4.9 Europe
2 Algeria 25 0 14 0.7 Africa
3 Andorra 245 138 312 12.4 Europe
4 Angola 217 57 45 5.9 Africa
5 Antigua & Barbuda 102 128 45 4.9 North America
6 Argentina 193 25 221 8.3 South America
7 Armenia 21 179 11 3.8 Europe
8 Australia 261 72 212 10.4 Oceania
9 Austria 279 75 191 9.7 Europe
10 Azerbaijan 21 46 5 1.3 Europe
11 Bahamas 122 176 51 6.3 North America
12 Bahrain 42 63 7 2.0 Asia
13 Bangladesh 0 0 0 0.0 Asia
14 Barbados 143 173 36 6.3 North America
15 Belarus 142 373 42 14.4 Europe
16 Belgium 295 84 212 10.5 Europe
17 Belize 263 114 8 6.8 North America
18 Benin 34 4 13 1.1 Africa
19 Bhutan 23 0 0 0.4 Asia
20 Bolivia 167 41 8 3.8 South America
21 Bosnia-Herzegovina 76 173 8 4.6 Europe
22 Botswana 173 35 35 5.4 Africa
23 Brazil 245 145 16 7.2 South America
24 Brunei 31 2 1 0.6 Asia
25 Bulgaria 231 252 94 10.3 Europe
26 Burkina Faso 25 7 7 4.3 Africa
27 Burundi 88 0 0 6.3 Africa
28 Cote d'Ivoire 37 1 7 4.0 Africa
29 Cabo Verde 144 56 16 4.0 Africa
... ... ... ... ... ... ...
163 Suriname 128 178 7 5.6 South America
164 Swaziland 90 2 2 4.7 Africa
165 Sweden 152 60 186 7.2 Europe
166 Switzerland 185 100 280 10.2 Europe
167 Syria 5 35 16 1.0 Asia
168 Tajikistan 2 15 0 0.3 Asia
169 Thailand 99 258 1 6.4 Asia
170 Macedonia 106 27 86 3.9 Europe
171 Timor-Leste 1 1 4 0.1 Asia
172 Togo 36 2 19 1.3 Africa
173 Tonga 36 21 5 1.1 Oceania
174 Trinidad & Tobago 197 156 7 6.4 North America
175 Tunisia 51 3 20 1.3 Africa
176 Turkey 51 22 7 1.4 Asia
177 Turkmenistan 19 71 32 2.2 Asia
178 Tuvalu 6 41 9 1.0 Oceania
179 Uganda 45 9 0 8.3 Africa
180 Ukraine 206 237 45 8.9 Europe
181 United Arab Emirates 16 135 5 2.8 Asia
182 United Kingdom 219 126 195 10.4 Europe
183 Tanzania 36 6 1 5.7 Africa
184 USA 249 158 84 8.7 North America
185 Uruguay 115 35 220 6.6 South America
186 Uzbekistan 25 101 8 2.4 Asia
187 Vanuatu 21 18 11 0.9 Oceania
188 Venezuela 333 100 3 7.7 South America
189 Vietnam 111 2 1 2.0 Asia
190 Yemen 6 0 0 0.1 Asia
191 Zambia 32 19 4 2.5 Africa
192 Zimbabwe 64 18 4 4.7 Africa

193 rows × 6 columns

ROWS

In [4]:
# to show all rows go to the documentation Pandas.get_option

# use display.max_rows
# this is the default
pd.get_option('display.max_rows')
Out[4]:
60
In [6]:
# let's change to set_option to change
# be careful if you've many rows
pd.set_option('display.max_rows', None)
In [7]:
drinks
Out[7]:
country beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol continent
0 Afghanistan 0 0 0 0.0 Asia
1 Albania 89 132 54 4.9 Europe
2 Algeria 25 0 14 0.7 Africa
3 Andorra 245 138 312 12.4 Europe
4 Angola 217 57 45 5.9 Africa
5 Antigua & Barbuda 102 128 45 4.9 North America
6 Argentina 193 25 221 8.3 South America
7 Armenia 21 179 11 3.8 Europe
8 Australia 261 72 212 10.4 Oceania
9 Austria 279 75 191 9.7 Europe
10 Azerbaijan 21 46 5 1.3 Europe
11 Bahamas 122 176 51 6.3 North America
12 Bahrain 42 63 7 2.0 Asia
13 Bangladesh 0 0 0 0.0 Asia
14 Barbados 143 173 36 6.3 North America
15 Belarus 142 373 42 14.4 Europe
16 Belgium 295 84 212 10.5 Europe
17 Belize 263 114 8 6.8 North America
18 Benin 34 4 13 1.1 Africa
19 Bhutan 23 0 0 0.4 Asia
20 Bolivia 167 41 8 3.8 South America
21 Bosnia-Herzegovina 76 173 8 4.6 Europe
22 Botswana 173 35 35 5.4 Africa
23 Brazil 245 145 16 7.2 South America
24 Brunei 31 2 1 0.6 Asia
25 Bulgaria 231 252 94 10.3 Europe
26 Burkina Faso 25 7 7 4.3 Africa
27 Burundi 88 0 0 6.3 Africa
28 Cote d'Ivoire 37 1 7 4.0 Africa
29 Cabo Verde 144 56 16 4.0 Africa
30 Cambodia 57 65 1 2.2 Asia
31 Cameroon 147 1 4 5.8 Africa
32 Canada 240 122 100 8.2 North America
33 Central African Republic 17 2 1 1.8 Africa
34 Chad 15 1 1 0.4 Africa
35 Chile 130 124 172 7.6 South America
36 China 79 192 8 5.0 Asia
37 Colombia 159 76 3 4.2 South America
38 Comoros 1 3 1 0.1 Africa
39 Congo 76 1 9 1.7 Africa
40 Cook Islands 0 254 74 5.9 Oceania
41 Costa Rica 149 87 11 4.4 North America
42 Croatia 230 87 254 10.2 Europe
43 Cuba 93 137 5 4.2 North America
44 Cyprus 192 154 113 8.2 Europe
45 Czech Republic 361 170 134 11.8 Europe
46 North Korea 0 0 0 0.0 Asia
47 DR Congo 32 3 1 2.3 Africa
48 Denmark 224 81 278 10.4 Europe
49 Djibouti 15 44 3 1.1 Africa
50 Dominica 52 286 26 6.6 North America
51 Dominican Republic 193 147 9 6.2 North America
52 Ecuador 162 74 3 4.2 South America
53 Egypt 6 4 1 0.2 Africa
54 El Salvador 52 69 2 2.2 North America
55 Equatorial Guinea 92 0 233 5.8 Africa
56 Eritrea 18 0 0 0.5 Africa
57 Estonia 224 194 59 9.5 Europe
58 Ethiopia 20 3 0 0.7 Africa
59 Fiji 77 35 1 2.0 Oceania
60 Finland 263 133 97 10.0 Europe
61 France 127 151 370 11.8 Europe
62 Gabon 347 98 59 8.9 Africa
63 Gambia 8 0 1 2.4 Africa
64 Georgia 52 100 149 5.4 Europe
65 Germany 346 117 175 11.3 Europe
66 Ghana 31 3 10 1.8 Africa
67 Greece 133 112 218 8.3 Europe
68 Grenada 199 438 28 11.9 North America
69 Guatemala 53 69 2 2.2 North America
70 Guinea 9 0 2 0.2 Africa
71 Guinea-Bissau 28 31 21 2.5 Africa
72 Guyana 93 302 1 7.1 South America
73 Haiti 1 326 1 5.9 North America
74 Honduras 69 98 2 3.0 North America
75 Hungary 234 215 185 11.3 Europe
76 Iceland 233 61 78 6.6 Europe
77 India 9 114 0 2.2 Asia
78 Indonesia 5 1 0 0.1 Asia
79 Iran 0 0 0 0.0 Asia
80 Iraq 9 3 0 0.2 Asia
81 Ireland 313 118 165 11.4 Europe
82 Israel 63 69 9 2.5 Asia
83 Italy 85 42 237 6.5 Europe
84 Jamaica 82 97 9 3.4 North America
85 Japan 77 202 16 7.0 Asia
86 Jordan 6 21 1 0.5 Asia
87 Kazakhstan 124 246 12 6.8 Asia
88 Kenya 58 22 2 1.8 Africa
89 Kiribati 21 34 1 1.0 Oceania
90 Kuwait 0 0 0 0.0 Asia
91 Kyrgyzstan 31 97 6 2.4 Asia
92 Laos 62 0 123 6.2 Asia
93 Latvia 281 216 62 10.5 Europe
94 Lebanon 20 55 31 1.9 Asia
95 Lesotho 82 29 0 2.8 Africa
96 Liberia 19 152 2 3.1 Africa
97 Libya 0 0 0 0.0 Africa
98 Lithuania 343 244 56 12.9 Europe
99 Luxembourg 236 133 271 11.4 Europe
100 Madagascar 26 15 4 0.8 Africa
101 Malawi 8 11 1 1.5 Africa
102 Malaysia 13 4 0 0.3 Asia
103 Maldives 0 0 0 0.0 Asia
104 Mali 5 1 1 0.6 Africa
105 Malta 149 100 120 6.6 Europe
106 Marshall Islands 0 0 0 0.0 Oceania
107 Mauritania 0 0 0 0.0 Africa
108 Mauritius 98 31 18 2.6 Africa
109 Mexico 238 68 5 5.5 North America
110 Micronesia 62 50 18 2.3 Oceania
111 Monaco 0 0 0 0.0 Europe
112 Mongolia 77 189 8 4.9 Asia
113 Montenegro 31 114 128 4.9 Europe
114 Morocco 12 6 10 0.5 Africa
115 Mozambique 47 18 5 1.3 Africa
116 Myanmar 5 1 0 0.1 Asia
117 Namibia 376 3 1 6.8 Africa
118 Nauru 49 0 8 1.0 Oceania
119 Nepal 5 6 0 0.2 Asia
120 Netherlands 251 88 190 9.4 Europe
121 New Zealand 203 79 175 9.3 Oceania
122 Nicaragua 78 118 1 3.5 North America
123 Niger 3 2 1 0.1 Africa
124 Nigeria 42 5 2 9.1 Africa
125 Niue 188 200 7 7.0 Oceania
126 Norway 169 71 129 6.7 Europe
127 Oman 22 16 1 0.7 Asia
128 Pakistan 0 0 0 0.0 Asia
129 Palau 306 63 23 6.9 Oceania
130 Panama 285 104 18 7.2 North America
131 Papua New Guinea 44 39 1 1.5 Oceania
132 Paraguay 213 117 74 7.3 South America
133 Peru 163 160 21 6.1 South America
134 Philippines 71 186 1 4.6 Asia
135 Poland 343 215 56 10.9 Europe
136 Portugal 194 67 339 11.0 Europe
137 Qatar 1 42 7 0.9 Asia
138 South Korea 140 16 9 9.8 Asia
139 Moldova 109 226 18 6.3 Europe
140 Romania 297 122 167 10.4 Europe
141 Russian Federation 247 326 73 11.5 Asia
142 Rwanda 43 2 0 6.8 Africa
143 St. Kitts & Nevis 194 205 32 7.7 North America
144 St. Lucia 171 315 71 10.1 North America
145 St. Vincent & the Grenadines 120 221 11 6.3 North America
146 Samoa 105 18 24 2.6 Oceania
147 San Marino 0 0 0 0.0 Europe
148 Sao Tome & Principe 56 38 140 4.2 Africa
149 Saudi Arabia 0 5 0 0.1 Asia
150 Senegal 9 1 7 0.3 Africa
151 Serbia 283 131 127 9.6 Europe
152 Seychelles 157 25 51 4.1 Africa
153 Sierra Leone 25 3 2 6.7 Africa
154 Singapore 60 12 11 1.5 Asia
155 Slovakia 196 293 116 11.4 Europe
156 Slovenia 270 51 276 10.6 Europe
157 Solomon Islands 56 11 1 1.2 Oceania
158 Somalia 0 0 0 0.0 Africa
159 South Africa 225 76 81 8.2 Africa
160 Spain 284 157 112 10.0 Europe
161 Sri Lanka 16 104 0 2.2 Asia
162 Sudan 8 13 0 1.7 Africa
163 Suriname 128 178 7 5.6 South America
164 Swaziland 90 2 2 4.7 Africa
165 Sweden 152 60 186 7.2 Europe
166 Switzerland 185 100 280 10.2 Europe
167 Syria 5 35 16 1.0 Asia
168 Tajikistan 2 15 0 0.3 Asia
169 Thailand 99 258 1 6.4 Asia
170 Macedonia 106 27 86 3.9 Europe
171 Timor-Leste 1 1 4 0.1 Asia
172 Togo 36 2 19 1.3 Africa
173 Tonga 36 21 5 1.1 Oceania
174 Trinidad & Tobago 197 156 7 6.4 North America
175 Tunisia 51 3 20 1.3 Africa
176 Turkey 51 22 7 1.4 Asia
177 Turkmenistan 19 71 32 2.2 Asia
178 Tuvalu 6 41 9 1.0 Oceania
179 Uganda 45 9 0 8.3 Africa
180 Ukraine 206 237 45 8.9 Europe
181 United Arab Emirates 16 135 5 2.8 Asia
182 United Kingdom 219 126 195 10.4 Europe
183 Tanzania 36 6 1 5.7 Africa
184 USA 249 158 84 8.7 North America
185 Uruguay 115 35 220 6.6 South America
186 Uzbekistan 25 101 8 2.4 Asia
187 Vanuatu 21 18 11 0.9 Oceania
188 Venezuela 333 100 3 7.7 South America
189 Vietnam 111 2 1 2.0 Asia
190 Yemen 6 0 0 0.1 Asia
191 Zambia 32 19 4 2.5 Africa
192 Zimbabwe 64 18 4 4.7 Africa
In [9]:
# reset back to normal
pd.reset_option('display.max_rows')
In [10]:
drinks
Out[10]:
country beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol continent
0 Afghanistan 0 0 0 0.0 Asia
1 Albania 89 132 54 4.9 Europe
2 Algeria 25 0 14 0.7 Africa
3 Andorra 245 138 312 12.4 Europe
4 Angola 217 57 45 5.9 Africa
5 Antigua & Barbuda 102 128 45 4.9 North America
6 Argentina 193 25 221 8.3 South America
7 Armenia 21 179 11 3.8 Europe
8 Australia 261 72 212 10.4 Oceania
9 Austria 279 75 191 9.7 Europe
10 Azerbaijan 21 46 5 1.3 Europe
11 Bahamas 122 176 51 6.3 North America
12 Bahrain 42 63 7 2.0 Asia
13 Bangladesh 0 0 0 0.0 Asia
14 Barbados 143 173 36 6.3 North America
15 Belarus 142 373 42 14.4 Europe
16 Belgium 295 84 212 10.5 Europe
17 Belize 263 114 8 6.8 North America
18 Benin 34 4 13 1.1 Africa
19 Bhutan 23 0 0 0.4 Asia
20 Bolivia 167 41 8 3.8 South America
21 Bosnia-Herzegovina 76 173 8 4.6 Europe
22 Botswana 173 35 35 5.4 Africa
23 Brazil 245 145 16 7.2 South America
24 Brunei 31 2 1 0.6 Asia
25 Bulgaria 231 252 94 10.3 Europe
26 Burkina Faso 25 7 7 4.3 Africa
27 Burundi 88 0 0 6.3 Africa
28 Cote d'Ivoire 37 1 7 4.0 Africa
29 Cabo Verde 144 56 16 4.0 Africa
... ... ... ... ... ... ...
163 Suriname 128 178 7 5.6 South America
164 Swaziland 90 2 2 4.7 Africa
165 Sweden 152 60 186 7.2 Europe
166 Switzerland 185 100 280 10.2 Europe
167 Syria 5 35 16 1.0 Asia
168 Tajikistan 2 15 0 0.3 Asia
169 Thailand 99 258 1 6.4 Asia
170 Macedonia 106 27 86 3.9 Europe
171 Timor-Leste 1 1 4 0.1 Asia
172 Togo 36 2 19 1.3 Africa
173 Tonga 36 21 5 1.1 Oceania
174 Trinidad & Tobago 197 156 7 6.4 North America
175 Tunisia 51 3 20 1.3 Africa
176 Turkey 51 22 7 1.4 Asia
177 Turkmenistan 19 71 32 2.2 Asia
178 Tuvalu 6 41 9 1.0 Oceania
179 Uganda 45 9 0 8.3 Africa
180 Ukraine 206 237 45 8.9 Europe
181 United Arab Emirates 16 135 5 2.8 Asia
182 United Kingdom 219 126 195 10.4 Europe
183 Tanzania 36 6 1 5.7 Africa
184 USA 249 158 84 8.7 North America
185 Uruguay 115 35 220 6.6 South America
186 Uzbekistan 25 101 8 2.4 Asia
187 Vanuatu 21 18 11 0.9 Oceania
188 Venezuela 333 100 3 7.7 South America
189 Vietnam 111 2 1 2.0 Asia
190 Yemen 6 0 0 0.1 Asia
191 Zambia 32 19 4 2.5 Africa
192 Zimbabwe 64 18 4 4.7 Africa

193 rows × 6 columns

COLUMNS

In [13]:
# the default for columns is 20
pd.get_option('display.max_columns')
Out[13]:
20

CELLS

In [ ]:
url = 'http://bit.ly/kaggletrain'
train = pd.read_csv(url)
train.head()
# in each cell, you can see '...'
# how do we change this?
In [15]:
pd.get_option('display.max_colwidth')
Out[15]:
50
In [16]:
# you can't use none here
pd.set_option('display.max_colwidth', 1000)
In [30]:
train.head()
Out[30]:
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.250 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38.0 1 0 PC 17599 71.283 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.925 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.100 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.050 NaN S
In [21]:
# decimal places for numbers
pd.get_option('display.precision')
Out[21]:
2
In [28]:
pd.set_option('display.precision', 3)
In [29]:
train.head()
Out[29]:
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.250 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38.0 1 0 PC 17599 71.283 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.925 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.100 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.050 NaN S
In [31]:
drinks.head()
Out[31]:
country beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol continent
0 Afghanistan 0 0 0 0.0 Asia
1 Albania 89 132 54 4.9 Europe
2 Algeria 25 0 14 0.7 Africa
3 Andorra 245 138 312 12.4 Europe
4 Angola 217 57 45 5.9 Africa
In [32]:
drinks['x'] = drinks.wine_servings * 1000
In [33]:
drinks['y'] = drinks.total_litres_of_pure_alcohol * 1000
In [34]:
drinks.head()
Out[34]:
country beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol continent x y
0 Afghanistan 0 0 0 0.0 Asia 0 0.0
1 Albania 89 132 54 4.9 Europe 54000 4900.0
2 Algeria 25 0 14 0.7 Africa 14000 700.0
3 Andorra 245 138 312 12.4 Europe 312000 12400.0
4 Angola 217 57 45 5.9 Africa 45000 5900.0
In [36]:
# split numbers using commas
pd.set_option('display.float_format', '{:,}'.format)
In [38]:
drinks.head()
Out[38]:
country beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol continent x y
0 Afghanistan 0 0 0 0.0 Asia 0 0.0
1 Albania 89 132 54 4.9 Europe 54000 4,900.0
2 Algeria 25 0 14 0.7 Africa 14000 700.0
3 Andorra 245 138 312 12.4 Europe 312000 12,400.0
4 Angola 217 57 45 5.9 Africa 45000 5,900.0
In [40]:
drinks.dtypes
# this only affected y because x is int type
Out[40]:
country                          object
beer_servings                     int64
spirit_servings                   int64
wine_servings                     int64
total_litres_of_pure_alcohol    float64
continent                        object
x                                 int64
y                               float64
dtype: object
In [60]:
# we can convert y to float using .astype
# replace existing column using assignment
drinks['wine_servings'] = drinks.wine_servings.astype(float)
In [61]:
# we need to concatenate
drinks.dtypes
Out[61]:
country                          object
beer_servings                     int64
spirit_servings                   int64
wine_servings                   float64
total_litres_of_pure_alcohol    float64
continent                        object
x                                 int64
y                               float64
dtype: object
In [62]:
# run code again
drinks['x'] = drinks.wine_servings * 1000
In [64]:
drinks.head()
# it works now!
Out[64]:
country beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol continent x y
0 Afghanistan 0 0 0.0 0.0 Asia 0.0 0.0
1 Albania 89 132 54.0 4.9 Europe 54,000.0 4,900.0
2 Algeria 25 0 14.0 0.7 Africa 14,000.0 700.0
3 Andorra 245 138 312.0 12.4 Europe 312,000.0 12,400.0
4 Angola 217 57 45.0 5.9 Africa 45,000.0 5,900.0
In [65]:
# offline documentation
pd.describe_option()
display.chop_threshold : float or None
    if set to a float value, all float values smaller then the given threshold
    will be displayed as exactly 0 by repr and friends.
    [default: None] [currently: None]

display.colheader_justify : 'left'/'right'
    Controls the justification of column headers. used by DataFrameFormatter.
    [default: right] [currently: right]

display.column_space No description available.
    [default: 12] [currently: 12]

display.date_dayfirst : boolean
    When True, prints and parses dates with the day first, eg 20/01/2005
    [default: False] [currently: False]

display.date_yearfirst : boolean
    When True, prints and parses dates with the year first, eg 2005/01/20
    [default: False] [currently: False]

display.encoding : str/unicode
    Defaults to the detected encoding of the console.
    Specifies the encoding to be used for strings returned by to_string,
    these are generally strings meant to be displayed on the console.
    [default: UTF-8] [currently: UTF-8]

display.expand_frame_repr : boolean
    Whether to print out the full DataFrame repr for wide DataFrames across
    multiple lines, `max_columns` is still respected, but the output will
    wrap-around across multiple "pages" if its width exceeds `display.width`.
    [default: True] [currently: True]

display.float_format : callable
    The callable should accept a floating point number and return
    a string with the desired format of the number. This is used
    in some places like SeriesFormatter.
    See formats.format.EngFormatter for an example.
    [default: None] [currently: <built-in method format of str object at 0x11411fe68>]

display.height : int
    Deprecated.
    [default: 60] [currently: 60]
    (Deprecated, use `display.max_rows` instead.)

display.large_repr : 'truncate'/'info'
    For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can
    show a truncated table (the default from 0.13), or switch to the view from
    df.info() (the behaviour in earlier versions of pandas).
    [default: truncate] [currently: truncate]

display.latex.escape : bool
    This specifies if the to_latex method of a Dataframe uses escapes special
    characters.
    method. Valid values: False,True
    [default: True] [currently: True]

display.latex.longtable :bool
    This specifies if the to_latex method of a Dataframe uses the longtable
    format.
    method. Valid values: False,True
    [default: False] [currently: False]

display.latex.repr : boolean
    Whether to produce a latex DataFrame representation for jupyter
    environments that support it.
    (default: False)
    [default: False] [currently: False]

display.line_width : int
    Deprecated.
    [default: 80] [currently: 80]
    (Deprecated, use `display.width` instead.)

display.max_categories : int
    This sets the maximum number of categories pandas should output when
    printing out a `Categorical` or a Series of dtype "category".
    [default: 8] [currently: 8]

display.max_columns : int
    If max_cols is exceeded, switch to truncate view. Depending on
    `large_repr`, objects are either centrally truncated or printed as
    a summary view. 'None' value means unlimited.

    In case python/IPython is running in a terminal and `large_repr`
    equals 'truncate' this can be set to 0 and pandas will auto-detect
    the width of the terminal and print a truncated object which fits
    the screen width. The IPython notebook, IPython qtconsole, or IDLE
    do not run in a terminal and hence it is not possible to do
    correct auto-detection.
    [default: 20] [currently: 20]

display.max_colwidth : int
    The maximum width in characters of a column in the repr of
    a pandas data structure. When the column overflows, a "..."
    placeholder is embedded in the output.
    [default: 50] [currently: 1000]

display.max_info_columns : int
    max_info_columns is used in DataFrame.info method to decide if
    per column information will be printed.
    [default: 100] [currently: 100]

display.max_info_rows : int or None
    df.info() will usually show null-counts for each column.
    For large frames this can be quite slow. max_info_rows and max_info_cols
    limit this null check only to frames with smaller dimensions than
    specified.
    [default: 1690785] [currently: 1690785]

display.max_rows : int
    If max_rows is exceeded, switch to truncate view. Depending on
    `large_repr`, objects are either centrally truncated or printed as
    a summary view. 'None' value means unlimited.

    In case python/IPython is running in a terminal and `large_repr`
    equals 'truncate' this can be set to 0 and pandas will auto-detect
    the height of the terminal and print a truncated object which fits
    the screen height. The IPython notebook, IPython qtconsole, or
    IDLE do not run in a terminal and hence it is not possible to do
    correct auto-detection.
    [default: 60] [currently: 60]

display.max_seq_items : int or None
    when pretty-printing a long sequence, no more then `max_seq_items`
    will be printed. If items are omitted, they will be denoted by the
    addition of "..." to the resulting string.

    If set to None, the number of items to be printed is unlimited.
    [default: 100] [currently: 100]

display.memory_usage : bool, string or None
    This specifies if the memory usage of a DataFrame should be displayed when
    df.info() is called. Valid values True,False,'deep'
    [default: True] [currently: True]

display.mpl_style : bool
    Setting this to 'default' will modify the rcParams used by matplotlib
    to give plots a more pleasing visual style by default.
    Setting this to None/False restores the values to their initial value.
    [default: None] [currently: None]

display.multi_sparse : boolean
    "sparsify" MultiIndex display (don't display repeated
    elements in outer levels within groups)
    [default: True] [currently: True]

display.notebook_repr_html : boolean
    When True, IPython notebook will use html representation for
    pandas objects (if it is available).
    [default: True] [currently: True]

display.pprint_nest_depth : int
    Controls the number of nested levels to process when pretty-printing
    [default: 3] [currently: 3]

display.precision : int
    Floating point output precision (number of significant digits). This is
    only a suggestion
    [default: 6] [currently: 3]

display.show_dimensions : boolean or 'truncate'
    Whether to print out dimensions at the end of DataFrame repr.
    If 'truncate' is specified, only print out the dimensions if the
    frame is truncated (e.g. not display all rows and/or columns)
    [default: truncate] [currently: truncate]

display.unicode.ambiguous_as_wide : boolean
    Whether to use the Unicode East Asian Width to calculate the display text
    width.
    Enabling this may affect to the performance (default: False)
    [default: False] [currently: False]

display.unicode.east_asian_width : boolean
    Whether to use the Unicode East Asian Width to calculate the display text
    width.
    Enabling this may affect to the performance (default: False)
    [default: False] [currently: False]

display.width : int
    Width of the display in characters. In case python/IPython is running in
    a terminal this can be set to None and pandas will correctly auto-detect
    the width.
    Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a
    terminal and hence it is not possible to correctly detect the width.
    [default: 80] [currently: 80]

io.excel.xls.writer : string
    The default Excel writer engine for 'xls' files. Available options:
    'xlwt' (the default).
    [default: xlwt] [currently: xlwt]

io.excel.xlsm.writer : string
    The default Excel writer engine for 'xlsm' files. Available options:
    'openpyxl' (the default).
    [default: openpyxl] [currently: openpyxl]

io.excel.xlsx.writer : string
    The default Excel writer engine for 'xlsx' files. Available options:
    'xlsxwriter' (the default), 'openpyxl'.
    [default: xlsxwriter] [currently: xlsxwriter]

io.hdf.default_format : format
    default format writing format, if None, then
    put will default to 'fixed' and append will default to 'table'
    [default: None] [currently: None]

io.hdf.dropna_table : boolean
    drop ALL nan rows when appending to a table
    [default: False] [currently: False]

mode.chained_assignment : string
    Raise an exception, warn, or no action if trying to use chained assignment,
    The default is warn
    [default: warn] [currently: warn]

mode.sim_interactive : boolean
    Whether to simulate interactive mode for purposes of testing
    [default: False] [currently: False]

mode.use_inf_as_null : boolean
    True means treat None, NaN, INF, -INF as null (old way),
    False means None and NaN are null, but INF, -INF are not null
    (new way).
    [default: False] [currently: False]


In [67]:
# specific searching
pd.describe_option('rows')
display.max_info_rows : int or None
    df.info() will usually show null-counts for each column.
    For large frames this can be quite slow. max_info_rows and max_info_cols
    limit this null check only to frames with smaller dimensions than
    specified.
    [default: 1690785] [currently: 1690785]

display.max_rows : int
    If max_rows is exceeded, switch to truncate view. Depending on
    `large_repr`, objects are either centrally truncated or printed as
    a summary view. 'None' value means unlimited.

    In case python/IPython is running in a terminal and `large_repr`
    equals 'truncate' this can be set to 0 and pandas will auto-detect
    the height of the terminal and print a truncated object which fits
    the screen height. The IPython notebook, IPython qtconsole, or
    IDLE do not run in a terminal and hence it is not possible to do
    correct auto-detection.
    [default: 60] [currently: 60]


In [69]:
# reset all options
pd.reset_option('all')

# do not worry about the warning
height has been deprecated.

line_width has been deprecated, use display.width instead (currently both are
identical)

/Users/ritchieng/anaconda3/envs/py3k/lib/python3.5/site-packages/ipykernel/__main__.py:2: FutureWarning:
mpl_style had been deprecated and will be removed in a future version.
Use `matplotlib.pyplot.style.use` instead.

  from ipykernel import kernelapp as app
Tags: pandas